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Abstract

Flavour-Changing Neutral Currents can be used as a way to test out New Physics.
More specifically, the polarisation of the photon in the decay D → Kππγ can be inter-
esting to study. In D decay, the photon always exhibits left-handed polarisation. On
the other hand, in Ds decay, the photon could display right-handed polarition thanks to
additional process compared to D decays.
In this report we will study from a theorical point of view these processes and estimate
the number of expected events for both decays.

1 Introduction
1.1 Transitions between Quarks
In the current Standard Model of particle physics, there a 6 quarks which are regrouped in three

generations :
(
u
d

)
,
(
c
s

)
and

(
t
b

)
There are two kinds of transitions between two quarks : transitions

which alter the charge and transitions which don’t alter the charge.

1.2 Flavour-Changing Charged Current
The quark eigenstates of mass and the quark eigenstates of interaction (denoted with a ’) are not the
same. This phenomenon is described with the Cabbibo-Kobayashi-Maskawa (CKM) matrix :d′

s′

b′

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

d
s
b

 (1)

This matrix is unitary but thanks to experiments, we know its non diagonal-terms are non-zero.
Because all the terms are not independent, this matrix can be reduced to 4 parameters :

• Three reals parameters which are three angles representing the mixing of the flavour between
quarks.

• One complex phase which describes the CP-violation. CP symmetry is the invariance under a
symmetry of both parity and charge.

1.3 Flavour-Changing Neutral Current
These transitions don’t alter the electric charge. These transitions are suppressed with the GIM
mechanism. This mechanism is based upon the introduction of a unitary matrix between the two
basis of eigenstates and the fact that quarks come in doublets. They are suppressed at tree level but
they are permitted with higher order mechanism such as loop.

1.4 Conclusion on the transitions of quarks
The 6 quarks leads to 15 different transitions :
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s

d

b

c

u

t

FCNC = GIM Mechanism

CKM other terms

CKM’s diagonal

One thing to note is that we have done all the parametrizations in the (d, s, b) sector. We could have
done the same in the (u, c, t) sector and we would have reached the same conclusions.

1.5 The Weak Current
With three generations we have the following current :

Jµ =
(
ū c̄ t̄

) 1
2
γµ(1− γ5)U

d
s
b

 (2)

This current is the strength of the interaction coupling two quarks during a process.

• The q̄ denotes an outgoing quark, whereas the q denotes an ingoing quark in accordance with
the Feynman Rules.

• The γµ(1 − γ5) leads to the V - A form of the weak interactions. The vector term has been
introduced as a direct analogy with the current of QED. The axial vector term describes the
CP-violation, which has been experimentally verified.

• The V - A form of the interaction comes from the fact that the weak interaction couples to
left-handed particles.

• U is the CKM matrix.

2 Feynman Diagram
We want to study the disintegration of a D meson emitting a photon. In weak interactions the photon
emitted is mostly of left polarization. The following diagrams describe the various processes involved
in this decay :

• Tree level diagrams which couple two quarks of the same generation, as illustrated in Figure 1.

• Loop Diagrams. They feature a spectator s̄ and ū and a FCNC transition : c → u, Figure 2.
We also have the second process for D0(cū) → K̄res(sd̄)γ where a loop is involved, Figure 3.

• Others, such as D0(cū) → φ(ss̄)γ, Figure 4.
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Figure 1: Tree level diagrams for D+(cd̄) → K+
res(us̄)γ, D+

s (cs̄) → K+
res(us̄)γ and D0(cū) →

K̄0
res(sd̄)γ
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Figure 2: Loop diagrams concern the two transitions : D+
s (cs̄) → K+

res(us̄)γ and D0(cū) →
ρ0(uū)γ
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Figure 3: Second process for D0(cū) → K̄0(sd̄)γ
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Figure 4: Process for D0(cū) → φ(ss̄)γ
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3 Beyond the Standard Model with D+ and Ds decays
3.1 The importance of the photon’s polarization
We will focuse especially on the two following decays :

• D+ → K+
1 (→ Kππ)γ

• D+
s → K+

1 (→ Kππ)γ

As seen previously, D+ and Ds both share tree-level contributions and those contributions produce
left-handed photons because it is a weak decay. However, there may be contributions of gluons which
alter the polarization of photons and thus we can have some right-handed photons.
Up to the U-spin (particles of the same multiplet that share the same hypercharge and exhibit different
charges, [3]) limit, the gluon contributions are the same for both D+ ans Ds.
However, while the first decay only occurs at tree level, the second level can occur at loop level. While
loop levels have smaller rates than tree levels, they can lead to the creation of unknownn particles and
for example, it could leads to a phenomenon implying a new kind of coupling boson. This wouldn’t
be a weak interaction and thus the emited photon wouldn’t have to be left polarized but could have
a right-handed polarization.
Thus, these decay can be a mean of production of photons that can deviate from the expected asymme-
try. These photons can be either right-handed or left-handed, but the proportions should be different
as the gluons interactions differ only at tree level process.

3.2 Amplitude for the D → K1γ decay
A formula is written in [1] for a b → s transition. We can take inspiration from it for a c → u decay
and thus write :

M(D → K1γ) =
−4GF√

2
V ∗
cbVub(CL 〈K1γ| O7 |D〉+ CR 〈K1γ| O′

7 |D〉) (3)

O7 and O′
7 are the following operators :

O7 =
e

16π2
mcūαLσ

µνcαRFµν (4a)

O′
7 =

e

16π2
mcūαRσ

µνcαLFµν (4b)

With : α as the colour indice, qL,R denotes a quark with a left or right chirality, σµν = [γµ, γν ] and
Fµν the electromagnetic tensor.
These operators translates the coupling between an ingoing charm and an outgoing up, with different
chirality each.
In the Standard Model, CR = 0 because we study weak decays which couple left-handed particles.
The polarization of the photon, λ, can be written with CR and CL in the following manner :

λ =
|CR|2 − |CL|2

|CR|2 − |CL|2
(5)

In the Standard Model, this polarization has always a value of ±1. If New Physics intervene, its value
could differ from this value.

3.3 Asymmetry
As will be seen in the section 4.2, photons are emitted along the ẑ axis and can be emitted upward
or downward. What we can measure is the asymmetry, which is related to the number of photons
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emitted in one direction or the other. We note λ = ±1 the photon polarization
This asymmetry can be calculated by :

A =

∫ 1
0

dΓ
d cos(θ)d cos(θ)−

∫ 0
−1

dΓ
d cos(θ)d cos(θ)∫ 1

0
dΓ

d cos(θ)d cos(θ) +
∫ 0
−1

dΓ
d cos(θ)d cos(θ)

=
3λB

8A
(6)

This asymmetry is non-zero if λ is non-zero. Because we need A and B to mesure λ, we will see in
the following that this asymmetry can be written in two different manners.

4 Computation of the Amplitude
4.1 Quasi-two bodies decay
When considering the following decay : K1 → Kππγ, we treat it as a subsequent two-body decay.
This mean that the initial K1 doesn’t decay in three pseudoscalar (Jp = 0−) mesons at once but it
occurs in two steps : first, the K1 decays to a vector meson V (Jp = 1−) and one of the meson (P3)
and then this meson V decays in the two other pseudoscalar mesons : P1 and P2

For a given decay, there are several possible intermediate vector mesons, such as ρ or K∗. Thus
the amplitude for each decay channel is the sum (with Clebsh-Gordan coefficients) of the amplitude
of the decay for every possible V meson.
Each one of these amplitude is itself the product of three terms :

• The amplitude of the first decay : K1 → V P3.

• The amplitude of the second decay : V → P1P2.

• A Breit-Wigner factor to take into account the vector meson resonance (describes the distri-
bution of mass that a meson can effectively have during a short time long enough so that the
transition can occur).

Due to the two-body coupling, the amplitude M(D → (K1 → Kππ)γ) is the product of the
amplitudes M(D → K1γ) and M(K1 → Kππ).

4.2 Generalities on the second decay
We can note for starters that the studying M(K1 → Kππ) doesn’t take into account whether the K1

originates from a D or a Ds.
For this subsection we consider the general decay M(K1 → P1P2P3). As we said at the subsection
4.1, the amplitude M(K1 → P1P2P3) is the sum of the amplitude for different vector mesons. The
coefficients being Clebsh-Gordan coefficients. We can put it under the following form :

M = Jµεµ (7)

where we introduced the polarization of the kaonic resonance : εµ = 1√
2

 1
±i
0

 and the helicity J :

Jµ = C1pµ1 − C2pµ2
The C coefficients thus arise from the sum (which differs from one decay to another) of the amplitudes
which are themselves sum for different intermediate vector meson :
We consider the 4 followings decays, named I to IV :

K+
1 = π0(~p1)π

+(~p2)K
0(~p3)

K+
1 = π−(~p1)π

+(~p2)K
+(~p3)

K0
1 = π0(~p1)π

−(~p2)K
+(~p3)

K0
1 = π+(~p1)π

−(~p2)K
0(~p3)
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Figure 5: The Kππ plane

{
CI,III
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√
2
3 (aK

∗
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∗
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√
2
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∗
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3
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1 = −2
3(a

K∗
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∗
13 )− 1√

6
aρ12

CI,III
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√
2
3 bK

∗
13 +

√
2
3 (aK

∗
23 − bK

∗
23 )− 1√

3
bρ12, CII,IV

2 = −2
3b

K∗
13 + 1√

6
bρ12

(8)

aij and bij being two parameters used to parametrize the different amplitudes and written under the
following form : aVij = gBWV f and bVij = gBWV f

′.
g being a coupling constant, BWV the Breit-Wigner put under the following form : BWV = 1

M2
V −s−i

√
sΓ

and f and f’ are functions depending of the parameters of the hadronic tensor and the Energies.
For the following section, we just need to keep in mind that C1 and C2 are complex numbers.

5 Study of the K1 → Kππ decay
5.1 Derivation of the invariant amplitude
Our frame of reference is the rest frame of the Kaonic resonance. The Kππ trajectories are within
the same plane, parametrized by ~n and ~x′. The photon (V) is emitted along an axis ẑ which is not in
this plane. We will project the plane in the Cartesian coordinates x, y and z, as follows : This leads
to the impulsions of the pions, named 1 and 2 :

~p1,2 = |~p1,2|

 cos(θ) cos(φ1,2)
sin(φ1,2)

− sin(θ) cos(φ1,2)

 (9)

As we said in the last section, we have M = 1√
2
(Jx ± iJy). Where Jx = C1|~p1| cos(φ1) cos(θ) −

C2|~p2| cos(φ2) cos(θ) and Jy = C1|~p1| sin(φ1)− C2|~p2| sin(φ2).
This directly leads us to the following differential rate :

d2Γ

d cos(θ)dφ1
≡ |M|2 = 1

2
(|Jx|2 + |Jy|2 ± 2 Im(J∗

xJy)) (10)

The expression (10) can be rewritten in two different ways.

5.2 Rewriting with the Dalitz angle
By introducing the angles δ = φ2 − φ1 and φ = φ2+φ1

2 , this leads us to :

d2Γ

d cos(θ)dφ
=

1

4
[2a− (a+ a2 cos(2φ) + a3 sin(2φ)) sin2(θ)± b cos(θ)] (11)
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where : 
a = |C1|2|~p1|2 + |C2|2|~p2|2 − 2Re(C1C∗

2)|~p1||~p2| cos(δ)
a2 = (|C1|2|~p1|2 + |C2|2|~p2|2) cos(δ)− 2Re(C1CC∗

2 )|~p1||~p2|
a3 = (|C1|2|~p1|2 − |C2|2|~p2|2) sin(δ)
b = 8i Im(C1C∗

2)|~p1||~p2| sin(δ)

After integrating over φ, we find : dΓ
d cos(θ) =

1
4 [2πa(1 + cos2(θ))± 2πb cos(θ)]

We can compare this expression to the following form : dΓ
d cos(θ) = A[1 + cos2(θ)) + λB cos(θ)], where

λ = ±1 for a right-handed (respectively left-handed) polarization.
This leads to : A = 1

2πa and B = 1
2πb.

5.3 Rewriting with the helicity J
We can calculate M using J’ instead of J, where J’ is the helicity in the referential of the K1 de-
cay. Following [1], we can find the following expression of the rate, in function of the helicity, after
integration over φ

dΓ
d cos(θ)

=
1

4
[|J |2(1 + cos2(θ))± 2 Im(~n · ( ~J ∧ ~J∗)) cos(θ)] (12)

5.4 Condition for having a non-zero asymmetry
Thus we can directly write the Asymmetry both in term of the helicity or in terms of a and b :

A =
3λ Im(~n · ( ~J ∧ ~J∗)

4|J |2
=

3λb

8a
(13)

This asymmetry is non-zero if and only if the imaginary part doesn’t vanish. As we seen in figure 5.2,
this imaginary part is non-zero if and only if C1C∗

2 is non zero.
If we compute Im(C1C∗

2), by looking at their expression in (8), we find that we have numerous kinds
of terms :

• Factors that mix neither V, nor a/b or the energy : they gives 0.

• Factors that don not mix V, but that mix any combination of a, b with the same or the different
energy are of the form : |BWV |2 Im(ff ′∗). Because f and f ′ are real, those terms gives 0.

• Factors that do not mix the K∗ meson, but because they are different energy, they do not give
0.

• Factors wich mix K∗ and ρ

Thus we can have a non-zero asymmetry for systems featuring K∗ only but they need to be of different
energy for system mixing ρ and K∗. Systems which do not mix ρ (all the ρ mesons have the same
energy) gives 0.

6 Statistics
6.1 Motivation
In the D → (K1 → Kππ)γ decay, the K1 exists in two states of mass, at both 1270 and 1400 GeV.
There are two final Kππ systems : D+ → K+π+π−γ (decay I) and D+ → K0π+π0γ (decay II)
As seen in [2], the Asymmetry depends of the invariant mass of the Kππ system, as seen on figure 6 We
want to study the evolution of the rate in terms of the asymmetry. Keeping in mind that A/λ = 3b/a
is given by :

dΓ
d cos(θ)

=
π

2
a[(1 + cos2(θ)) + 8A

3
λ cos(θ)] (14)

The plot 7 was done using the value of the asymmetry for the rest mass as the value of the invariant
mass for the two states of mass of K1 for both decay.
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Figure 6: Invariant K+π+ π− (upper plots) and K0π+π0 (lower plots) mass dependance of | ~J |2
plots to the left) and A/λ (plots to the right) for K1 (1270,1400) resonances separately and
with relative fraction of the K1(1400) : χK1(1400)
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Figure 7: Plot of the rate for different asymmetries. The K1 at 1270 Gev (respectively at 1400
GeV) has an asymmetry of 0.05 (resp. -0.008) in decay I and an asymmetry of -0.013 (resp.
-0.3) in decay II.
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Figure 8: Fit of the rate using the least χ2 method for an asymmetry of 0.05

6.2 Fit
Using a list of experimental points, we fitted the equation (14) using the least χ2 method, to find a
and λ the best fit we have is on figure 8.

7 Monte-Carlo Simulation
7.1 Event Generation
We will first generate our signal : D+ → (K+

1 → K+π−π+)γ.
As described in part 4.1, this decay can occur in three different ways, the first two implying an
intermediate vector mesons and the third one being a direct three-body decay :

• D+ → [K+
1 → (ρ0 → π−π+)K+]γ

• D+ → [K+
1 → (K∗ → π−K+)π+]γ

• D+ → [K+
1 → π−K+π+]γ

The generations will be the following, for each mode using a Monte-Carlo generator : we start by a
e+e−

γ∗
−→ cc final state from which we filter 10000 events, where at least is present a D+.

Then we reconstruct the final states of these decay through the assigned mass and momentum of
simulated final states. We aim to estimate the number of D+ that could actually be reconstructed.

7.2 The combinatorial background
The measured first concern is the combinatorial background which dictates that most of the recon-
structed particles are not D+. This term designates a partially reconstructed signal where the pions
or the gamma is not from the D signal.
For example, when we look at the distribution of the mass of the D meson, the events which have the
right invariant mass can be in a really small number compared to events all happening at an other
mass. What we need is to reduce it.
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Figure 9: Momentum in the center of mass of both the reconstructed D mesons in the Signal
and in the Combinatorial Noise
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Figure 10: Energy of the photons produced both in the signal (left) and in the combinatorial
background (right)

The combinatorial noise is visible in every distribution we produce. It is possible to separate it from
the real signal in a very efficient way after the processing is done. This can be achieved by using a
variable which tracks which particles are from the signal and which ones are from the combinatorial
noise (with a certain confidence level). However, this variable is of course only accessible for a simula-
tion of this kind. What we need is to find, using this variable, what differs in the distributions of the
observables of both the signal and the combinatorial background, to apply cuts on the observables of
the sum of the two (the raw signal).
The difficulty of applying cuts to our simulated data to extract the purest signal is that the purer the
signal will be, the less events it will have. We thus need to find a compromise between a pure signal
and a number of events high enough so that we have enough statistics.

8 Selection
8.1 Selection on the center of mass momentum
As we can see on figure 9, the distribution of the momentum from the combinatorial noise has a
decreasing exponential shape. This means that the lower the momentum of the particles from the
signal is, the more they are buried under the combinatorial noise. At a high enough center of mass
momentum (about 2.5 GeV), we can keep the recorded events. Under this momentum, all particles
will be cut, regardless they are part of the signal or not.

8.2 Selection on the energy of the photons
As representend on 10, most of the photons produced in the signal display an energy of above 0.4 GeV
while most of the photons produced in the combinatorial background features an energy of under 0.4
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Figure 11: Fit

GeV. Thus, we can remove from our raw signal the events that produce photons of insufficient levels
of energy.

8.3 Quality of the reconstruction of the Kaons
There are some particles which are not correctly reconstructed. For example, Kaons which are recon-
structed as pions. While Kaons and Pions are similar, the difference in mass between the two can blurr
the data. Hopefully, it is possible, with the Particle Identification Detector, to remove from the events
considered from the raw signal the events where the Kaons have not been reconstructed with enough
confidence. This value is represented on 11 Typically, if the particle that has been reconstructed as a
Kaon has a confidence level below 90 %, then it is remove from the statistics from the raw signal.

9 Masses plots
To reconstruct the masses of the intermediate vector meson, we have from the conservation of the
Energy and the 3-momentum for the Kπ system :

(
√

m2
K + p2K +

√
m2

π + p2π)
2 −

∑
i

[(pK)i + (pπ)i]
2 = m2

Kπ = m2
K∗ (15)

We expect this equation to give the invariant mass of the K∗. In the same way,we have an analogous
formula for the ππ that we expect to give the invariant mass of the ρ0. Through our simulation, we
can have direct access to the mass of the D meson and the remaining combinatorial noise (figure 12),
the K1 (figure 13) and the intermediate vector meson when there is one (figure 14).
The D’s mass distribution was done using only the part of the raw signal which has been identified
as the signal. In the same way, the distribution of mass of the remaining combinatorial noise after
applying the cuts was done the parts of the raw signal which were identified as being not the signal.

As we can see, we can expect around 624 events for the three-body mode, around 1229 events for
the K∗ mode and 1676 events for the ρ mode. As seen on [7], the Ds has a fraction of about the half
of the one one the D+. This mean we can expect to have about two times less Ds than D mesons.

9.1 Number of Expected Events
As seen on [6], Belle II is expected to reach an integrated luminosity of L = 50×10−46ab−1. If we know
the cross-section, σ and the fraction f , we can estimate the number of expected D and Ds mesons by

13



stats
Entries  624
Mean    1.865
Std Dev    0.01921

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
D_M

0

10

20

30

40

50

60

70

80

90

N
um

b

stats
Entries  624
Mean    1.865
Std Dev    0.01921

D_M
stats

Entries  2322
Mean    1.908
Std Dev    0.05765

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
M

0

10

20

30

40

50

60

70

N
um

b

stats
Entries  2322
Mean    1.908
Std Dev    0.05765

M noise

stats
Entries  1229
Mean    1.864
Std Dev    0.01948

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
D_M

0

20

40

60

80

100

120

140

160

180

N
um

b

stats
Entries  1229
Mean    1.864
Std Dev    0.01948

D_M

stats
Entries  3053
Mean     1.91
Std Dev    0.05615

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
M

0

10

20

30

40

50

60

70

80

90

N
um

b

stats
Entries  3053
Mean     1.91
Std Dev    0.05615

M noise

stats
Entries  1676
Mean    1.865
Std Dev    0.02124

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
D_M

0

20

40

60

80

100

120

140

160

180

200

220

240

N
um

b

stats
Entries  1676
Mean    1.865
Std Dev    0.02124

D_M

stats
Entries  4065
Mean    1.908
Std Dev    0.05641

1.8 1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2 2.02
M

0

20

40

60

80

100

120

N
um

b

stats
Entries  4065
Mean    1.908
Std Dev    0.05641

M noise

Figure 12: On left, masses for the D (mass of around 1.869 GeV) meson for the three channels.
From left to right : 3-body decay, K∗ and ρ0 and on right what’s left after applying the cuts.
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Figure 13: Masses for the intermediate K1(1270) for the three channels. From left to right :
3-body decay, K∗ and ρ0
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Figure 14: Masses for the intermediate vector meson. For the K∗ channel, the Kπ system gives
the K∗ mass and for the ρ0 channel, the ππ system gives the ρ0 mass

calculating : L× σ × f . For the D and Ds mesons, σ = 1.3nb. The fraction for the D is 0.23 and for
the Ds it is 0.10 (as seen on [7]). This gives us an expected number of 1.5× 1010 events for the D and
an expected number of 6.5× 109 events for the Ds.
To estimate the number of events that can effectively be measured, we need to take into account that
only a portion of the events can be seen. As shown on the plots of the masses, we only have about
1000 events that survived the selection with the cuts out of 10000 events. Thus we can only have
access to 10% of the events.
Finaly, we need into account the interesting rate to see how much D or Ds actually decay into Kππ.
As seen on [8], the expected rates are :

• (2.1± 0.5)×10−4 for the ρ0 mode

• (2.5± 0.4)×10−4 for the K∗ mode

We thus can expect around 6.75×105 and 2.925×105 events for the decays in which we are interested
in.

10 Dalitz plots
10.1 Principles
Dalitz plots are visual representation of the phase-space of a three-body decay involving only spin-0
particles.
Let’s consider a 3 bodies decay from a mother particle of mass M to 3 particles of masses 1,2 and
3. There are 3 four-vectors in the final state which leads to 12 degrees of freedom. Thanks to the
4-momentum conservation, the 3 masses and the 3 Euler angles, this leads to a grand total of only 2
degree of freedom. We have in the center of mass of the mother particle the following relation for any
permutation of i,j,k=1,2,3 :

m2
ij = (pµi + pµj )

2 = (pµ + pµk) = M2 +m2
k − 2MEk (16)
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Figure 15: Dalitz plot for the ρ0 mode and the K∗ mode

As seen in [4], the sum m2
12+m2

23+m2
31 is a constant. The Dalitz Plot is plotting two out of these three

variables, such as m2
12 versus m2

23 The different plots are thus linked to the norm and the directions
of the different momenta.
Futhermore as seen in [5], the number of times 0 is crossed is linked to the spin of the particle and
the shape of the plot is linked to how relativistic our decay is. The closer it is to a triangle shape, the
more it is in a relativistic regime.

10.2 Dalitz Plot
By projecting on the ππ (respectively on the Kπ) plane the ρ (respectively the K∗) mass for the ρ
(respectively the K∗) mode a straight, we expect to see a line, perpendicular to the axis of projection.
The outcome was as can be seen on 15. As we can see on the Dalitz Plots, the invariant masses of
the Kaon and of the Pion are the minimum threshold of the phase space. The masses are not really
well-defined. This may be due to the K1 which cut the phase space at the nominal masses of its
products.
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Conclusion
Although the additional loop-level contributions to the decay of Ds → Kππγ in comparison to the
decay D → Kππγ represent an interesting gateway to the study of New Physics, these events are
tricky to study experimentally. Indeed, they are part of a very open system, the masses are not
well-defined and thus, the signal is hard to extract. Further research could focus on the major source
of noise D → Kπ+π−π0 to determine whether or not this decay possesses a sufficient rate to warrant
experimentation.
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