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Abstract

The field of nuclear astrophysics is an interdisciplinary field at the crossroads of astrophysics
and nuclear physics. It aims to answer fundamental questions of the origins of the elements in the
universe and to tackle nuclear reactions in physics of stellar objects. We will focus on the r-process,
which forms about half of the elements with a nucleon number A > 70.
A key component in the r-process is the cross section for radiative neutron capture. Theoretical
predictions of these cross sections are required and one needs radiative strength function to use
the statistical model. The major contributions to the RSF come from E1 and M1 transitions
with small additions of E2 transitions. They are usually parameterized by a Lorentzian which is
motivated by the success of describing the electric giant dipole resonance by such a form. While
it is successful for the description of collective nuclear excitations, deviations from this behavior
were found at the lowest transitions energies, where e.g. an enhancement for M1 transitions was
observed. The calculations of neutron capture cross-section are often performed in the Hauser-
Feshbach model which relies upon the assumption, known as the Brink-Axel’s hypothesis, that the
strength function is independent of the considered state.
This internship will focus on calculations of the radiative strength function for M1 and E2 trans-
itions for nuclei around A ≈ 50, most notably 48Cr, 48Ti and 50Ti. We will delve on the validity of
the Brink-Axel’s hypothesis for these nuclei by looking at the effects of applying cuts in excitation
energies on the states in the calculations on the global shape of the radiative strength function. If
the Brink-Axel’s hypothesis was fulfilled, it should be invariant. We will also study the influence of
the shape of the nucleus upon the presence or not a low energy enhancement at low energies in the
radiative strength function. More precisely, 48Ti is a spherical nucleus whereas 48Cr is deformed
and 50Ti is a semimagic nucleus.

Résumé

Le domaine de la physique nucléaire est un domaine interdisciplinaire à la croisée des chemins
entre l’astrophysique et la physique nucléaire. Son but est de répondre à des questions fondamen-
tales sur l’origine des éléments dans l’univers et d’adresser les réactions nucléaires dans la physique
des objets stellaires. Nous nous concentrerons sur le processus r, qui forme environ la moitié des
éléments avec un nombre de nucléon A > 70.
Une information clé en astrophysique nucléaire est la section efficace de capture radiative de neu-
tron. Les prédictions théoriques de ces sections efficaces sont requises and il est nécessaire d’avoir
les fonctions de transert radiatif pour utiliser le modèle statistique. Les contributions majeures
proviennent de transitions E1 et M1 avec de faibles additions de transitions E2. Elles sont en
général paramétrisés par une lorentzienne, ce qui est motivé par le succès dans la description de la
résonance électrique géante d’une telle forme. Bien que cela soit une réussite pour les descriptions
des excitations nucléaires collectives, des déviations de ce comportement ont été trouvées aux tran-
sitions d’énergies les plus basses i.e. une augmentation pour les transitions M1 ont été observées.
Les calculs sont en général faits dans le cadre du modèle d’Hauser-Feshbach lequel repose sur la
supposition, connue comme l’hypothèse de Brink-Axel, que la fonction de force est indépendante
de l’état considéré.
Ce stage se concentra sur les calculs de fonction de transfert radiative pour des transitions M1 et
E2 pour des noyaux avec A ≈ 50, plus précisément 48Cr, 48Ti et 50Ti. Nous nous concentrerons sur
la validité de l’hypothèse de Brink-Axel pour ces noyaux en s’intéressant aux effets qu’ont des cou-
pures en énergie d’excitations sur les états dans les calculs pour la forme globale de la fonction de
transfert radiatif. Si l’hypothèse de Brink-Axel est vérifée, alors elle devrait rester invariante. Nous
étudierons également l’influence de la forme du noyau sur la présence ou non d’une augmentation
à basse énergie de la fonction de transfert radiatif. Plus précisément, 48Ti est un noyau sphérique
alors que 48Cr est déformé et 48Ti est un noyau semimagique.
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1 Introduction
This internship was performed between the 2 March 2020 and the 30 June 2020 at the Institut
Pluridisciplinaire Hubert Curien in Strasbourg in the Theory Group. The goal of this internship
was to investigate the Radiative Strength Functions (RSF) of different multipolarities and type for
different nuclei. RSF are a key component in astrophysical calculations. The Quasiparticle Random
Phase Approximation (QRPA) formalism offers a model which is currently the only one to work for
all nuclei. This approach has been developed for example in Ref. [7]. It has shown to yield results
in pretty good agreement for the RSF when free parameters are added such as in Ref. [8]. Those
parameters are adjusted thanks to RSF calculations done with the Shell Model, which will be the
framework used in this internship. Usually, RSF are approximated by Lorentzian but effects such as
an enhancement at low energies underlines effects that are not captured by this simple formula. More
precisely, Lorentizan mostly fails to describe an increase of the dipole (multipolarity L = 1) strength
below 3 MeV γ-ray energy which has been found in several nuclei in the mass range A ≈ 50− 100 in
experiments.
There have been numerous Shell-Model based theoretical studies as in Refs. [9] and [10]. Shell-model
calculations have been able to probe that an enhancement at low-energies for the M1 strength function
is a common feature for numerous nuclei. Ref. [12] also highlights that the Brink-Axel hypothesis is
well checked at higher excitation energies for nuclei around the N = 82 shell closure. This behavior
can be explained by radiation from many close-lying states of a similar structure in nuclear quasi-
continuum.
Regarding E1 calculations, Ref. [11] shows, using the Shell Model, that there is no enhancement at
low energies for 44Sc. This conclusion holds for neighboring nuclei. It also produces an enhancement
at low energies for the M1 RSF. Finally, the sum of theses contributions have been shown to reproduce
experimental date pretty well for excitation energies in the range 4 − 8 MeV, within the error bars
range of the experimental data. For lower energies, the magnetic part fits with the error bars with
the experimental data.
Some SM calculations have also been done for E2 transitions. Notably, E2 transitions have been
studied for 94Mo and 95Mo in Ref. [14]. It has shown the domination of the large number of transitions
between Jf = Ji with Ji = ±1 of the distribution of the average B(E2). The deduced strength
functions increase toward zero transition energy and show a finite Gauss-shaped maximum. This is a
very different behavior than the phenomenological expression recommended in the reaction data base
RIPL [15]. Also in an energy range up to about 6 MeV, the average E2 strength function calculated
with the Shell Model is greater than the phenomenological expression by one order of magnitude.
While the enhancement of the M1 transitions have been found in several nuclei, there are neighboring
nuclei were no such enhancement has been observed. For example, titanium and chromium nuclei
have been previously studied in [13]. It is shown that while nearly all the titanium isotopes have an
upbend in their strength function for M1 transitions, no such upbend is present in the chromium, up
to 51Cr. Most notably, 48Cr is an example of a prolate-deformed rotor in the pf-shell as was shown
in Ref. [16]. Systems with such deformation have been shown not to have an upbend at the lower
energies but instead the RSF is rather flat towards Eγ = 0. This indicate that the shape of the nucleus
plays a role in the presence of the upbend at low energies for M1 transitions. In this study, we are
going to investigate the properties of M1 and E2 transitions for 48Cr, 48Ti and 50Ti, most notably
their radiative strength function and their yrast lines. E2 transitions have not been studied previously
for theses elements. These nuclei can be studied in the pf shell and therefore there is only the positive
parity to consider. Having the same mass, 48Ti is a spherical nucleus while 48Cr is deformed. 50Ti is
an example of a semi-magic nucleus (N=28).
We will first recall the properties of nuclear reactions and nuclear decays which lead to multiple
hypothesis on the RSF themselves. Next we will describe the nuclear structure model used to calculate
numerically the states and the transitions for a given nucleus. Then we will investigate the properties
of γ-ray transitions which enter the calculations of the RSF. Following this we will examine the results
obtained with the code developed during the internship. We will examine the RSF of the mid-mass
nuclei A ∼ 48 with a special emphasis on the E2 transitions, examine the possible dependence of the
E2 RSF on the shape of the nucleus and examine the validity of the Brink-Axel hypothesis for the
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studied cases.

2 Nuclear reactions & Nuclear decays

2.1 The field of nuclear Astrophysics

Nuclear astrophysics is the interdisciplinary field within physics merging the physics of large-scale
objects (astrophysics) and of small-scale objects (nuclear physics). Its goal is to describe the processes
occurring in the universe and their effects on its evolution. A key topic in nuclear astrophysics is the
Nucleosynthesis. This term covers all the processes that create the elements in our universe and
the influence of the astrophysical conditions on the properties of these processes.
It can be classified into three subgroups :

• Big bang nucleosynthesis : The first nucleosynthesis, which happened in the first minutes after
the Big Bang, is responsible for the creation of the lightest nuclei : Hydrogen and Helium, which
have been the fuel for the first stars.

• Stellar nucleosynthesis : There are two processes : the pp-chain which leads to the creation of
Helium and the CNO cycle. This cycle burns lighter elements from Helium to Carbon, Neon,
Oxygen up to Silicon for the heaviest stars.

• Explosive nucleosynthesis : Those are the processes occurring under extreme conditions such as
neutron stars mergers or supernovae explosions.

The last process is the one responsible for the creations of most of the nuclei in the Segré chart. It
leads to the creation of heavy elements, which are made by capture of neutrons and as such there
is a need to determine the neutron capture cross section in radiative reaction. This process can be
subdivided into two, depending on the neutron density :

• s-process : Occurring at small neutrons densities (time-scales of neutron captures are slow
compared to those of beta-decay). It follows the valley of stability and thus explains the abund-
ance of magic number nuclei.

• r-process : Occurring at large neutron densities and at high temperatures. It creates about
half of A ≈ 60. It follows an isotopic chain until a (n, γ) ⇐⇒ (γ, n) equilibrium where we note
(n, γ) : A+ n→ B + γ

The r-process proceeds up to nuclei characterized by a longer lifetime : the waiting point nuclei,
where it stops until a β-decay occurs. Such nuclei are the magic neutron shell closures where the
(n, γ) reaction rate drops which explains the longer lifetime of such nuclei. The r-process runs through
isotopes with extreme neutron excess which can not be synthesized in experimental facilities, hence we
need theoretical predictions of the neutron capture cross sections which are usually performed in the
Hauser-Feshbach model. The main classification of nuclear reactions is usually done according to
the reaction time-scales, fast being reaction time comparable to fly-by time if both reaction partners
would not interact (scattering process).
Let’s consider a reaction A+ a→ B+ b, then the Q value is defined by : Q = ma +mA− (mb +mB).
It is the energetical possibility of a reaction. Here the masses are the nuclear masses (the atomic
masses including the nuclear masses and the binding energies of the electrons). If Q is positive, then
the reaction is permitted, otherwise it is not energetically allowed.

2.2 Compound nucleus (CN)

We now consider a nuclear reaction where the bombarding particle loses all its energy to the target
nucleus and becomes an integral part of a new, highly excited, unstable nucleus. We called this
resulting nucleus made of the incident particle and the target nucleus which are indistinguishable, the
compound nucleus (CN). The basic assumption is that the formation and the decay of the compound
nucleus are independent of each other.

4



Figure 1: Scheme of a Hauser-Feshbach reaction, ie. A + a → highly excited compound nucleus
→ B + b, taken from Ref. [1]

The formation stage takes a period of time approximately equal to the time interval for the bombarding
particle to travel across the diameter of the target nucleus (about 10−21 second). Secondly, after a
relatively long period of time (typically from 10−19 to 10−15 second) and independent of the properties
of the reactants, the compound nucleus disintegrates, usually into an ejected small particle and a
product nucleus.
For the compound nucleus, peaks in the cross-section are typical. Each peak is manifesting a particular
compound state of nucleus. Theses peaks and the associated compound nuclei are usually called
resonances.
If a CN is formed, then we can consider the energy of the incident neutron to be shared uniformly
between all the nucleons before the deexctitation of the system by gamma or particle emission. This
can be justifies due to the level density in the compound nucleus being high enough to ensure an
average statistical continuum superposition of available resonances, ie. there is no distinguished state
on which the neutron is captured.

2.3 Hauser-Feshbach model

The large number of nucleons and the high excitation energies leads to many accessible states. The
Hauser-Feshbach (HF) model is a theoretical formulation of the compound nucleus picture. This is a
model using statistical averages over the resonances instead of a single resonance model.
Figure 1 shows the principle schematics of a CN reaction. Due do the conservation laws arising from
an electromagnetic transition we have the following conservation laws:

E = EA + Ea −Q (1a)

|JA − l − sA| ≤ J ≤ JA + l + sA (1b)

π = (−1)lπAπa (1c)

Here we have noted the angular momentum J , the orbital angular momentum l and the spin s and as
such we have J = l+d More generally, for an X-type electromagnetic transition and an L-multipolarity,
we have the following laws for the angular momentum and the parity π :

|JA − l| ≤ J ≤ JA + l (2a)

π = (−1)LπA (X=electric) (2b)

π = (−1)L−1πA (X=magnetic) (2c)

This has been written for the projectile, for the decay nucleus, we can replace A by B and a by b to
have the selection rules for the decay nucleus.
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2.4 The model

Due to the Bohr’s hypothesis underlying the CN reaction (independence between the formation and
the decay of the CN), the cross section can be factorised into two parts : one for the formation and
one for the decay probability. We now introduce reaction channel which specifies the particles as
well the quantum numbers involved. For example, the γ-channel describes all possible γ-decays that
might occur for a given compound nucleus.
As shown in Ref. [2], the (n,γ) cross-section at the center-of-mass energy E is proportional to :

σµν(n,γ)(E, n) ∝
∑
J,π

(2J + 1) ·
Tµ
n T ν

γ

Tµ
n + T ν

γ

(3)

where J is the half-integer neutron spin, Tµ
n and T ν

γ are transmission coefficients i.e. the probability
of penetration of the potential barrier. In astrophysics applications, the incident neutron energy is of
the order of the keV which leads to σµν(n,γ)(Ei, n) ∼ T ν

γ .
The transmission coefficient for a photon of energy Eγ for a state µ in a given X-type, L-multipolarity
transition is given by the following relation in terms of the RSF fXL:

Tµ
γ (E, J, π

µ, E, J, π) = Tγ(Eγ ;XL) = 2πfXL(Eγ)E
2L+1
γ (4)

This will be studied later in 4.3.

3 Nuclear structure model

3.1 Nuclear level densities

Let N(E) be the number of levels up to an energy E. The nuclear level density (LD) is defined as :

ρnucl(E) =
N(E +∆E)−N(E)

∆E

∆E→0−−−−→ dN
dE

(5)

The LD have a large influence on Hauser-Feshbach predictions because of its exponential rise, thus it
is an important quantity for this model. The basic assumption of HF is the existence of a reasonably
large number of overlapping resonances. That is why the application of this model for magic nuclei
is problematic because these nuclei exhibit small LD due to the shell gap. The same concerns light
nuclei.
The basic approach is to count the number of levels in the needed energy interval, ie. compute all the
eigenvalues of the nuclear Hamiltonian and their degeneracy and then count how many fall into the
interval [E,E + dE]. As an example, if the nucleus is in its ground state, all levels are filled up to the
Fermi level. If the nucleus is excited, then fermions can be excited to a level above the Fermi level.
The places where the particles stood are the hole-states, the places where the particles are present are
the particle-states.
The more energy there is, the more states above the Fermi level are available.

3.2 Nuclear Hamiltonian problem

Because derivations of nuclear interactions from QCD are still ongoing, we consider microscopic models
which employ phenomenological interactions. The microscopic Hamiltonian H in a non-relativistic
model in which we assume that only two-body interactions are relevant takes the following form :

H =
∑
ij

tija
†
iaj +

1

4

∑
ijkl

v̄ijkla
†
ia

†
jalak (6)

Where the indices i, labeling single-particle states, goes from 0 up to ∞. The v̄ijkl are the antisym-
metrized matrix elements of the two-body interaction. We ought to diagonalize this Hamiltonian but
in practice it is impossible because the Hilbert space is of an infinite dimension, thus we need to trim
it. One can consider two options :
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• Restrict the number of particles and states (1)

• Approximate the eigentstates of H by simpler wave functions (2)

We will concentrate on the first approach, the Shell-Model formalism, which was used for the results
of this work. The second approach being known as Hartree-Fock.

3.3 Nuclear Shell Model

There are experimental evidences for shell structure, most notably, the magic numbers and single
particle states. In our problem, compound nucleus reactions occur at relatively high excitation energies
where many collision are not Pauli blocked. At lower energies, collisions tends to be Pauli suppressed
and thus single-particle motion can persist. This means that instead of considering the interaction of
one nucleon with all the others, we can consider this nucleon is only affected by an average potential.
Such a potential has been empirically derived by introducing a spin-orbit into a harmonic oscillator
mean field :

U(r) =
1

2
mω2r2 +D ·~l2 − C ·~l · ~s (7)

We thus have : an isotropic harmonic oscillator potential, an orbit-orbit term and the spin-orbit
coupling needed to reproduce the magic numbers (2, 8, 20, 28, 50, 82, and 126 being the first seven
ones). This leads to single-particle levels splitting.
Using Wick’s theorem, with a defined core as the reference state to the general nuclear Schrödinger
equation, we obtain :

H = E0 +
∑
i

εi : a
†
iai : +

1

4

∑
ijkl

v̄ijkl : a
†
ia

†
jalak : (8)

: a†b : designates the normal ordering of the operators a† and b, the εi are the single-particle energies
obtained from a mean field. Thus the last term is a two-body term : the residual interaction. This
is the part that contains everything which goes beyond the mean-field and this is this term that
differentiate Hartree-Fock based methods from SM.

3.4 The Large Scale Shell Model

In this approach, we sunder the complete shell model of a nucleus into three parts :

• The inert core which is composed of the orbits that are always full. They all have an energy
which is under the Fermi energy.

• The valence space which is the part where we allow nucleon excitation.

• The external space which is composed of the orbits that are always empty, therefore, there is no
allowed excitations here.

Afterwards, we need to define a valence space, which is the basis for the calculations, an effective
interaction which is designed for the valence space and a numerical method to diagonalize the
Hamiltonian.
Ideally, one would need all the shells generated by the nuclear potential. As it leads to an infinite
Hilbert space, we solve the problem in the valence space by using an effective interaction. Thus we
trim the Hilbert space in such a way that low-energy shells are removed. This approximation is valid
up to excitation energies of the nucleus which are not too high. By doing this approximation we got
from a matrix element 〈ψ|H |ψ〉 to an effective matrix element 〈ψeff |Heff |ψeff 〉.
An often-used basis is the m-scheme which is built from all Slater determinants constructed from
all possible configurations that the chosen valence space allows. The physical states are obtained by
simply diagonalizing the Hamiltonian matrix 〈φSD,α|Heff |φSD,β〉.
This induce to use for quantum numbers the projections Jz and Tz. The dimensionality becomes :
d =

(
dn
n

)(
dp
p

)
where dn is the degeneracy of the neutron space, dp the degeneracy of the proton space,

n is the number of neutrons in the valence space and p is the number of protons in the valence space.
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Figure 2: Scheme of a γ-transition

4 γ-ray transitions in nuclei

4.1 Electric and magnetic transitions

Let’s consider two states, i and j, respectively at the excitation energy of Ei and Ef . The only
deexcitation which conserves the number of protons and neutrons is the emission of γ-rays, which are
carried by the electromagnetic force. The energy of the corresponding transition from the initial state
i to the final state f is Ei→j = Ei − Ef , as shown on figure 2. γ-rays are characterized by their type
X (electric or magnetic) and the momentum L they carry.
Electric-type transitions are represented by the QL operator, whereas magnetic-type transitions are
represented by the ML operator.
From which arise the reduced transitions probabilities for an X-type transition of multipolarity L :

• B(EL, Ji → Jf ) =
1

2Ji+1 | 〈f | |QL| |i〉 |2

• B(ML, Ji → Jf ) =
1

2Ji+1 | 〈f | |ML| |i〉 |2

The name reduced comes from the absence of any angular momentum information. The selection
rules are the following : |Ji − Jf | ≤ L ≤ Ji + Jf for the angular momentum and πi = (−1)Lπf or
πi = (−1)L+1πf for the parity for electric transitions (respectively for magnetic transitions). The
change of parity for L=1,2 and 3 is summarized in Table 4.1 :

Table 1: The behavior the three first multipolarities for both electric and magnetic type transitions
Type \Multipolarity 1 2 3
Magnetic No Yes No
Electric Yes No Yes

4.2 Rotational Bands

4.2.1 Rotational motion

Rotational motion is guided by deformation of multipolarity L = 2 which are the quadrupole de-
formations, the collective phenomena which are excitations in which a large number of nucleons, even
all nucleons, participate. They mostly occur at high energy while single-particle excitations occurs
at low-energy. In particular, giant resonances are collective excitation involving all nucleons. They
present a large magnitude of the resonance and they can be parametrized with a Lorentzian form
factor. However this does not apply for low energies. In the case of the quadrupole deformations, they
yield either prolate or oblate nucleus for a spherical shape nucleus. This is represented on Fig. 3. We
will now consider the rotational energy by following the steps of Ref. [4]. The classical expression for
the rotational energy is :

H =

3∑
i=1

R2
i

Ji
(9)
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Figure 3: The three shapes a nucleus can take

Where Ri is the angular momentum generated by the motion of the nuclei and Ji are the moments
of inertia. Now, if we take the Hamiltonian in the frame of quantum mechanics, then its eigenvalues
form regular sequences, which are the rotational bands.
Following the steps of [5] we can consider the nucleus as a droplet of quantum liquid where its shape
is a consequence of the shell structure. A deformed nuclear surface specifies an orientation in space
and as such it can perform a quantal rotation. That is, a rotor Hamiltonian of type 9 describes this
excitation mode, which carries the ‘‘collective’’ angular momentum ~R. If we consider a quadrupole
deformation of a nucleus of moment inertia J , we can note that the ratio J /B(E2) is nearly constant
because both the numerator and the denominator are proportional to the square of the deformation
parameter. As such it is often seen as an evidence of a correlation between these two parameters.

4.2.2 Magnetic Rotation

Experimental results show that nuclear rotation is not a collective phenomenon that occurs only in well
deformed nuclei. The reason is that the ratio is very large for the dipole bands in comparison to the
same ratio for well deformed heavy nuclei and superdeformed nuclei. This leads to the conclusion that
something has to carry a long transverse magnetic dipole moment but almost no charge quadrupole
moment.
We can interpret this open question in the following way : high-j protons particles and neutron holes
form current loops embedded in the mass distribution of the nucleus, which is nearly spherical.
These loops are associated with transverse magnetic moment µT and we can specify as such an angle
of rotation around the axis J.
We can associate with protons particles an angular momentum ~jp and with neutron holes an angular
momentum ~jn. To increase the total angular moment ~J , one have to align the angular momenta ~jn
and ~jp. This mechanism is called the shears arrangement. This name comes from the resemblance of
the motion with the closing of a pair of a shears, which have a spring to keep them open. The dipole
bands are thus referred to as shears bands. The shears arrangement of the high-j orbitals gives rise to
a large transverse magnetic dipole moment. It is this long transverse dipole that rotates and generates
the strong magnetic radiation. Ref. [6] called it the ”magnetic rotation”. (This name is a reference to
the order parameter that specifies the orientation).
If we close the two blades of the shears, then the transverse component of the magnetic moment
becomes shorter. This leads to the decrease of the B(M1) values with increasing angular momentum
as an inevitable consequence of the shears mechanism. This is summarized on figure 4.

4.3 Radiative strength function

As seen in 2.4, the transmission coefficient is directly linked to a function fXL, the radiative strength
function, which depends on the type of transition X, the multipolarity L and the energy Eγ . Let us
consider a γ-decay from an initial level a to a final level b. The relevant quantum numbers for a level i
being (Ei, Ji, πi). There are two parametrizations, whether with the transmission coefficient T γ

ab(XL)
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Figure 4: The shear mechanism. The angular momenta of the protons ~jp and of the neutron holes ~jn
are separately lined-up. If they got aligned then the total momentum ~J will get larger.

or with the partial width : Γ̄γ
ab(XL)

2πE2L+1
γ fXL = T γ

ab(XL) =
2π

D(Ea, Ja, πa)
Γ̄γ
ab(XL) (10)

The transition from an initial state to a final state and the transition from this final state to the initial
state are related by a relation known as the principle of detailed balance which gives a relation between
the reduced probability transition elements : (2Ji + 1)B(XL, i→ f) = (2Jf + 1)B(XL, f → i).
If we wanted to have such a relation for the respective RSF, we would need the statistical distribution
of the reduced matrix elements with respect to the energy. Hence in a first approximation we shall do
the distinction between the absorption RSF

−→
f and the emission RSF

←−
f .

The RSF for a X-type, L-multipolarity is given from the Bartholomew definition (Ref. [3]) :

fXL(Ei, Eγ , πi, Ji) = aXL < BXL(Ei, Eγ , πi, Ji) > ρ(Ei) (11)

With < BXL(Ei, Eγ , πi, Ji) > being the mean over the excitation energies of reduced probability
element in a bin of Eγ and ρ(Ei) the density of state at the given excitation energy. The constant
aXL depends on the transition. The values used in this work are given in the Table 4.3. As seen in
this table, the magnetic dipole transitions (M1) are usually much smaller in magnitude compared to
the electric dipole transitions. However, at low Eγ , because they preserve parity while E1 is a parity
changing transition, they may dominate. E2 transitions yields even smaller transitions at low energy

Table 2: Table of the coupling constants used in RSF codes
E1 (e2fm2) M1 (µ4N ) E2 (e2fm4)

aXL 1.04 · 10−6 1.158 · 10−8 0.80632 · 10−12

they might have relevance like M1 transitions because they also are parity-preserving transitions. In
the present work, we shall use B and LD values obtained within the shell model framework.

4.4 Brink-Axel’s hypothesis

This is the assumption the photoabsorption cross section does not depend on the properties of the
initial state, this means that the RSF should not depend on the energy or the spin of the initial
state. The consequence that lies beneath is that the absorption RSF built on an excited state can be
approximated by the one built on the ground state.In that case, the Brink’s hypothesis is equivalent
to :
−→
f =

←−
f = f . This is a strong assumption and as such its validity can be questioned. Experiments

have shown that the hypothesis is fulfilled in good approximation for the giant dipole resonance region.
The deviations from the hypothesis have been observed for low transition energies by Refs. [14] and
[12].
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4.5 Towards this work

As stated previously, RSF have been computed previously for M1 transitions for multiple isotopes of
chromium and titanium in Ref. [13]. E2 transitions have been studied previously for heavier elements,
namely 94Mo and 95Mo in Ref. [14]. This work will focus on E2 transitions for 48Cr, 48Ti and 50Ti
and comparing them to M1 transitions for theses elements. These elements can be studied in the pf
shell and as such, there is only the positive parity to consider. For each nucleus, 600 states for spin
going from 0 to 12, 41130 M1 transitions and 63130 E2 transitions have been previously computed
using Large-Scale Shell Model (LSSM) code at the IPHC as shown in Ref. [17]. These will be the
so-called input files which are used in the code presented in the following section.

5 Results

5.1 Code

To study the RSF a python code was developed during this internship.This code used two kind of
files. The first are the spectrum files, which yields most notably, the spin of the nucleus, the parity,
the excitation energy and the energy state. There is a spectrum files for each parity. The second
are the transitions files, which are encoding the transitions calculations done in the Large-Scale Shell
Model (LSSM). Whether the transition changes parity such as in E1 or not, there is one file or two
files, respectively. They yield the initial spin, the final spin, the energy of the state, the energy of the
γ-transition, the reduced probability transition, denoted as BXL(Ji− > Jf ) and the BXL(Jf− > Ji).
When the calculations are done in the LSSM, the states are not sorted by their excitation energies, thus
we have a mix of upward and downward transitions so we need to sort them to have only downward
transitions (deexcitations). As such, when a negative transition energy is encountered, this means we
have an upward transition so we need to exchange the initial and final states to have a downward
transition.
The spectrum files are used to compute the level density as a function of the excitation energy, whether
it is the total LD or the LD by spin. The transition files are used to compute the averages of the
reduced probability transition as a function of the Eγ . The code lets the user choose the element of
interest, the type, the multipolarity, the bin width, whether cuts in the excitation energy are wanted
or not and to choose between different plots. It is also possible to select transitions corresponding to
the yrast bands.
Another code has been written to retrieve, for a given set of transitions, between which states the
transitions do occur, and their associated configurations. E2 transitions have not been previously
studied, except for [14] which was a study of 94 Mo and 95 Mo which would be our main comparison
point.

5.2 Yrast bands

The yrast level schemes for the three nuclei of interest have been represented on Fig. 5. Depending

48Cr

0.0+0.0
2.0+0.6984

0.6984

4.0+1.82872
1.13032

6.0+3.41852

1.5898

8.0+5.19576

1.77724

10.0+7.05097

1.85521

12.0+8.64091

1.58994

48Ti

0.0+0.0
2.0+0.9035

0.9035

4.0+2.07455
1.17105

6.0+3.10572
1.03117

8.0+4.41831

1.31259

10.0+6.06374

1.64543

12.0+8.38047

2.31673

50Ti

0.0+0.0

2.0+1.61542

1.61542

4.0+2.69446
1.07904

6.0+3.49175
0.79729

8.0+6.97313
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10.0+8.10444
1.13131

12.0+11.56085

3.45641

Figure 5: The levels scheme for the yrast of the three nuclei. The gap in excitation energy between
two consecutives levels have been noted near the arrows. The excitation energy is in MeV.
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on the spacing and the law followed by the levels scheme, one can determine the shape of a nucleus.
If the nucleus is spherical, the energy of its levels follows a law En = nh̄ω with n a natural number,
whereas if the nucleus is deformed then it follows a law in E = J(J + 1)/J where J is the spin and
J is the moment of inertia of the nucleus.
The 2+ level is much higher in 50Ti than it is in 48Cr and 48Ti which is typical of a closed-shell nucleus
(in this case, it has 28 neutrons, which is a magic number) and as such, of a spherical nucleus. 48Ti
levels are more evenly spaced which tends to confirm that this nucleus is not deformed whereas 48Cr
is.
The yrast band for the 48Cr has been previously studied in Ref. [17] where different theoretical
calculations using the Shell Model with the KB3 interaction, the Gogny Force and the cranked Hartree-
Fock-Bogoliubov have been compared to experimental data. A good rotor must have a nearly constant
Q0, which is the case up to J = 10 in 48Cr after which it is shown to backbend as seen on [17].

5.3 RSF of M1 and E2 transitions

The RSF have been presented in Sec. 4.3. The yielded results for each nucleus and for both transitions
types are plotted on Fig. 6. As we can see, the strength function of M1 is much higher than the
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Figure 6: The RSF for E2 and M1 transitions obtained from shell-model calculations.

strength of E2 for each nucleus. Most notably, while there is an enhancement at low-energies for 48Ti
and 50Ti, there is no such enhancement for 48Cr. On the contrary, there is such an enhancement for
both nuclei in E2 transitions. Enhancement of M1 transitions have been reported in the literature
such as for 44Sc in [11]. For the two titanium nuclei, there is an increase of the RSF which comes
directly from the increase of the B(M1) for Eγ > 6 MeV. This increase is less prominent and does not
appear after Eγ > 8 MeV. In the case of E2, there is no such increase in B(E2), hence the decrease
of the corresponding RSF with the increase of Eγ .
As discussed previously in 4.2.2, the increase of the low-energy RSF can be due to a phenomenon
called magnetic rotation. This effect has been predicted to appear in different regions of nuclei, as can
be seen in Fig. 7 taken from [4].

From this figure we can see the two titanium nuclei are indeed in a region where the magnetic
rotation has been predicted to be possible whereas it is not the case for 48Cr, which is in accordance
with the finding of a low energy enhancement or not in the nuclei of this study. Magnetic rotation
has been previously proposed as an explanation of the increase of the RSF for nuclei in Ref. [14].
Finally, M1 transitions yield a RSF of around 2 orders of magnitude higher than E2 transitions. As
such, E2 transitions can be neglected in comparison to M1 transitions. Even for the 48Cr where there
is no enhancement at low energies, the M1 transitions remains 10 times higher than the highest E2
transitions for this element which are at Eγ ≈ 0 MeV.
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Figure 7: On the left : predicted mass regions where magnetic rotation is possible. These regions are
enclosed by thick solid lines ; on the right : zoom on the nuclei of this work

5.4 Testing the Brink-Axel’s hypothesis

This hypothesis has been discussed in Sec. 4.4. We can ascertain its validity by studying the behavior
of the RSF obtained with different cuts in excitation energy, as shown on Fig. 8. If this hypothesis
holds true, then the RSF should remain the same independently of the applied cuts in excitation
energies. For each nucleus and for the two types of transitions, we can see that the RSF done using
states in the range 0− 8 MeV and 5− 8 MeV are identical. This is due to the dominance of the high
energy states in the RSF. We can note that for 48Cr, there is a drop in the E2 RSF for Eγ in the
range 1− 5 MeV in the excitation energy range 4− 6 MeV, which is not the case for the M1 RSF and
the E2 RSF of the two titanium nuclei.
Besides, the behavior at low energies is preserved regardless of the cuts applied in excitation energies.
We still have the enhancement for E2 transitions at low energies for each of the nuclei. Also, there is
still an enhancement for M1 transitions at low energies for the two titanium nuclei while there is no
such enhancement for the chromium. All in all, we can consider that the Brink-Axel hypothesis tends
to be well respected.

5.5 Spin-flip

The previous RSF have been computed by performing an average over the spins a the partial RSF, ie.
the RSF for a given spin. These partial RSF are represented on Fig. 9. This is an another mean to
test the correctness of the Brink-Axel’s hypothesis as it an other way to see this independence of the
RSF with respect to the properties of the initial state. In fact, looking for the independence of spins
rather than the independence of the excitation energy is an even stronger statement.
For M1 transitions, the 0+ states are contributing a bit more than the other states. Around 6−8 MeV,
we can see an increase of the RSF strength function. This is called the spin-flip which are transitions
between single-particle states which have especially strong M1 matrix element. These transitions
have the same l but different j. Here this spin-flip occur between f7/2 and f5/2 state. Due to the
energetical gap at N = 28, a lot of energy is needed to promote a particle to the f5/2 orbital hence
the apparition of this structure around 6 MeV.
In the case of E2 transitions, we can note that the partial RSF of J = 0+ is especially strong when
compared to the RSF for the other spins. They are strongly coupled with 2+ hence 2+ → 0+ yields
the major contributions to the RSF.
Also, there are peaks of RSF values around 1 − 3 MeV for the 48Cr. While peaks do appear in 48Ti
and 50Ti, they occur at higher energies, at 4− 6 MeV.
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Figure 8: Plots of the M1 and E2 RSF for different cuts in excitation energy for the nuclei 48Cr, 48Ti
and 50Ti
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Figure 9: Partial M1 and E2 RSF for the nuclei 48Cr, 48Ti and 50Ti
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5.6 Main contributions

For E2 and M1 RSF, we can study which transition yield the greatest B(E2) (respectively B(M1))
value at low energies (under Eγ = 2 MeV) in a given energy bin. We have taken a bin of 0.2 MeV.
This enables us to look at which states yield the strongest transition. We can extend the definition of
the greatest value to all the B value which have at least 90% of the maximum, but this does not yield
many more states. As such we will concentrate each time only on the strongest transition.
For 48Cr, the states yielding the major contributions for E2 are mostly with 4 protons and 4 neutrons on
the f7/2 shell for both the initial state and the final state. Those states also have minor contributions
of states with 3 proton and/or 3 neutrons in the f7/2 and 1 proton and/or 1 neutron in the p1/2
shell. The transitions found are mostly of the kind of Jf = Ji − 2 except at very low energies (ie. the
first two bins) where it is Jf = Ji− 1. Concerning M1 transitions, the states found are essentially the
same albeit most of the transitions occur between states with Jf = Ji − 1.
Concerning 50Ti the E2 transitions found are connecting states with Jf = Ji−1 in the range 0 < Eγ < 1
while the transitions in the range 1 < Eγ < 2 are connecting Jf = Ji − 2. Theses stares are mostly
states with the two protons on the f7/2 shell for both the initial and the final state. For the neutrons,
those states mostly corresponds to states with 6 or 7 neutrons on the f5/2 and 2 or12 on the p1/2.
There also some states where one of the configurations presents 2 neutrons on the p3/2 shell or other
mixing between the 4 uppermost shells. For M1 transitions, the states connected are also dominated
by states with 2 protons on the p7/2 shell and 6 or 7 neutrons on the f5/2 and 2 or1 on the p1/2.
The connected states are states with Jf = Ji − 2
The same study was done for 48Ti where the states yielding the largest B(M1) have been found to
occur between states where Jf = Ji, Ji ± 1. The dominating states are with 2 protons in the f7/2
shell or with one proton in the f7/2 shell and one in the p1/2. The 6 neutrons are in the f7/2 state.
The higher the energy goes and the more other configurations appears for the neutrons. There are
configurations with 4 neutrons in the f5/2 shell and the 2 remaining in the p3/2 shell and configurations
with 4 neutrons in the f7/2, 1 neutron in the p3/2 shell and the last neutron being in a lower shell,
not in the 4 upper shells. The largest E2 transitions are essentially connecting Jf = Ji, Ji ± 1 for
0 < Eγ < 1 while they are connecting Jf = Ji, Ji ± 2 for Eγ > 1 MeV.
In comparison Ref.[14] has found that the transitions occurs between states with Jf = Ji, Ji ± 1.
Notably, these transitions have been shown to occur between states yielding large B(M1) values. In
this study, it was found that both the large B(M1) values in 48Ti and the large B(E2) values in 48Cr
were also connecting states with Jf = Ji, Ji ± 1. However, it was found for 50Ti that the transitions
yielding the large B(E2) values were connecting states with Jf = Ji−2. In Ref. [14] it was found that
instead of having an exponential rise near the lower energies, the LSSM predicts a finite maximum
of a Gauss-like shape. Here the increase at lower energies predicts more a linear slope which in fine
leads to a finite maximum. In fact this can be a Gauss-like shape which would more widened than in
Ref. [14].

6 Conclusions and perspectives
This work has used previously computed diagonalization of the nuclear hamiltonian to study the
properties of the RSF of two types : E2 and M1 in three nuclei : 48Cr, 48Ti and 50Ti. That leads
to a comparative analysis between M1 and E2 transitions in each of the aforementioned elements.
There is an enhancement at low energies for 48Ti and 50Ti but not for 48Cr in M1 transitions while
there is such an enhancement for E2 transitions for the three nuclei. This can be explained by the
shape of the nucleus, because the 48Cr is not spherical whereas the two others are. The calculations of
the RSF are done under the Brink-Axel’s hypothesis, which is better fullfilled for the RSF of the two
types in the 48Ti and 50Ti than in 48Cr. It has been found that in spite of the low-energy structure
effects found in E2 strength functions and regarding possible deviations from the phenomenological
formula predicted in RIPL as in the case of Ref. [14], their magnitude is much smaller than in the
M1 strength functions, so it seems the E2 can be disregarded in microscopic calculations of the RSF
even in well deformed nuclei like 48Cr. For each nucleus and for the two type of transitions, the main
configurations have been found at low energies. A microscopic study of the structure effects for these
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elements could be performed next to probe appearing structure effects.
I acknowledge Kamila Sieja for her availability which yields me quick answers despite the epidemic.
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